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Abstract. Large-scale natural soundscapes are remarkably complex and
offer invaluable insights into the biodiversity and health of ecosystems.
Recent advances have shown promising results in automatically classify-
ing the sounds captured using passive acoustic monitoring. However, the
accuracy performance and lack of transferability across diverse environ-
ments remains a challenge. To rectify this, we propose a robust and flex-
ible ecoacoustics sound classification grid search-based framework using
optimised machine learning algorithms for the analysis of large-scale nat-
ural soundscapes. It consists of four steps: pre-processing including the
application of spectral subtraction denoising to two distinct datasets
extracted from the Australian Acoustic Observatory, feature extraction
using Mel Frequency Cepstral Coefficients, feature reduction, and clas-
sification using a grid search approach for hyperparameter tuning across
classifiers including Support Vector Machine, k-Nearest Neighbour, and
Artificial Neural Networks. With 10-fold cross validation, our experimen-
tal results revealed that the best models obtained a classification accu-
racy of 96% and above in both datasets across the four major categories
of sound (biophony, geophony, anthrophony, and silence). Furthermore,
cross-dataset validation experiments using a pooled dataset highlight
that our framework is rigorous and adaptable, despite the high variance
in possible sounds at each site.

Keywords: Ecoacoustics · Signal Processing · Machine Learning ·
Optimised Grid Search

1 Introduction

Australia is one of the most biodiverse regions on Earth, yet many species are
under threat [2]. Effective monitoring solutions and techniques have now become
imperative for the tracking of at-risk species. Ecoacoustics serves as one such
solution, which has gained recent attention for its potential in ecological conser-
vation [1,8,16,17]. Leveraging modern advancements in low-cost sound recording
and data storage solutions, remote sensor monitoring of natural soundscapes are
now possible by way of large-scale Passive Acoustic Monitoring (PAM) [5]. This,
in turn, allows ecoacoustics studies to now utilise the wide spatial and temporal
soundscape coverage enabled by PAM [14].
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In recognition of these conservation benefits, a new large-scale sensor network
was established called the Australian Acoustic Observatory (A2O) [14]. The A2O
seeks to capture sounds at an ecosystem level. To do so, over 360 listening sta-
tions are situated at 90 different sites across Australia to capture sounds from as
many ecoregions as possible. Natural soundscapes are broadly composed of four
sound groups including: biophony (the sounds produced by animals), geophony
(natural non-biological sounds like wind or water), anthrophony (sounds induced
by humans) and periods of silence. By segregating these recorded sounds into the
four primary categories, researchers can gain a nuanced understanding of their
relative balance which is useful for analysing the state of biodiversity and effects
of human impact [6,7]. Despite this, much of the existing Machine Learning (ML)
and Deep Learning (DL) ecoacoustics research relies on single-species, often
non-ecological datasets [4,5,8,15]. While these are valuable, they don’t provide
the comprehensive insights needed for broader ecological conclusions. Analysing
large-scale PAM datasets like those derived from the A2O, are uniquely chal-
lenging for several reasons. Firstly, they feature an exceptionally high variance
in the types of sounds captured. Natural environments are profoundly complex
and dynamic places, which change on a day-to-day basis. This is compounded
by the sheer diversity of species calls, which often overlap each other in both
time and frequency [13]. To address these intricacies, this research will explore
the integration of select Feature Extraction (FE), Feature Reduction (FR), and
denoising techniques. Our framework will need to be flexible and robust with
these considerations in mind, while still maintaining high accuracy. We believe
that using a grid search based approach for both the hyperparameter-sensitive
FR techniques, and associated classifiers, will achieve these desired outcomes.

The contributions of this work can be summarised as follows:

– Proposal of a novel grid search based methodology that leverages ML algo-
rithms to identify and categorise distinct sounds within diverse ecological
environments;

– Utilisation of a human-inspired approach to feature representation, aimed at
improving classification performance;

– Provision of a range of exploratory experiments using the real ecoacoustics
data captured from two distinct ecosystems in Australia to evaluate the effec-
tiveness of each classifier-based prediction model on unseen contextual test
cases;

– Identification and suggestion of the most suitable algorithms and supervised
learning techniques for classifying ecoacoustics sounds into the four broad
categories in soundscape ecology.

2 Related Works

Natural soundscapes are inherently complex due to the vast diversity of species
calls which can change on a day-to-day basis. For this reason, models must be
generalisable with these complications considered in order to be genuinely useful
in the real world. However, this is often not the case. Many existing approaches
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are trained and tested on single species datasets, or ones with low taxonomic
variation, which does not accurately reflect the real-world [5]. Those which do
use natural soundscape datasets such as one study in 2021 [16], have employed
the use of summary statistics in the form of acoustic indices. By using overly
summative features like acoustic indices, crucial details are lost which diminishes
the richness of the recordings, resulting in a loss of overall accuracy down to 70%
in some downstream classification tasks.

Another study using a natural soundscape dataset has shown some merit
in classifying broad sound groupings. Here, the authors were able to achieve
relatively accurate results across each of the major sound groups (biophony,
geophony, and anthrophony), ranging from 88% to 95% accuracy using an Arti-
ficial Neural Network (ANN) classifier with Mel Frequency Cepstral Coefficients
(MFCCs) [6]. However, the study was conducted using a dataset constructed
from four recorders in a comparatively smaller study site compared to the A2O,
situated on the border of France and Switzerland. Furthermore, sounds were
collected episodically for 1 min, every 15 min, rather than continuously as with
recordings derived from the large-scale initiatives like the A2O [14]. Thus, the
flexibility of their approach is unknown as the authors did not experiment with
data from alternative study sites.

Furthermore, several studies have used overly sanitised or non-representative
datasets. For this reason, many approaches are capable of performing well on
datasets containing specific species like frogs [3] and birds [8,15], however, they
lack flexibility to different ecoregions, and are too specialised to assist in answer-
ing broader ecological questions. Accurate, adaptable ecoacoustics classification
is pivotal for ecologists. Not only can it facilitate comprehensive biodiversity
assessments, but it also plays a crucial role in early detection and prevention of
species loss.

3 The Proposed Framework

Fig. 1. A conceptual diagram for a robust grid search based framework for use with
large-scale ecoacoustics data.
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In this study, we propose a novel grid search based classification framework for
use with large-scale natural soundscape audio signals based on MFCC feature
vectors and ML techniques as shown in Fig. 1. Raw, unlabelled audio was col-
lected directly from the A2O from two geographically different ecoregions to
test for cross-site validity. The raw signals were segmented into 4.5-second-long
non-overlapping sequences, resulting in a combined total of 8,841 samples, which
were subsequently annotated by human experts. From this point we established
two datasets: one was unaltered containing the original 8,841 labelled samples,
and the second was a direct copy with spectral subtraction denoising applied to
all samples. From this, we extracted the MFCC feature vectors as represented by
the corresponding heatmap visualised in Fig. 2(b). To achieve this, we compute
a Mel-Spectrogram with 128 Mel bands, as seen in Fig. 2(a). This was chosen
due to its ability to closely mirror the human auditory system’s frequency per-
ception. Furthermore, transforming the spectrograms onto a decibel logarithmic
scale has been shown to successfully capture the underlying signal properties.
This has been validated across a range of ML tasks including bird song clas-
sification [11,19], as well as its usage in acoustic scene classification [6,12,20].
The extraction of 13 MFCC features provides a compact representation of the
audio’s spectral shape, allowing for high intra-class variability for class discrim-
ination. In addition, we also include the first- and second-order derivatives of
MFCCs in a 26- and 39-feature vector, respectively, as a way of capturing the
audio’s temporal dynamics. Finally, we apply a min-max normalisation scheme
to avoid any single feature from disproportionately influencing the model due
to its scale. Due to the high-dimensional nature of these feature vectors, we
also used several FR techniques including Principle Component Analysis (PCA),

Fig. 2. An example Mel-Spectrogram and associated 13-MFCC feature vector heatmap
derived from the same 5 min of biophony audio from the Tarcutta A2O site.
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t-distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) to measure their effect on downstream
model performance and to counter potential cases of overfitting. For classifiers,
we implemented a grid search approach for tuning the hyperparameters of several
ML models including Artificial Neural Network (ANN) and k-Nearest Neighbour
(k-NN), and used the default parameter settings for Support Vector Machine
(SVM), Decision Tree (DT), and Näıve Bayes (NB). The performance of each
classifier was evaluated using macro-based metrics for accuracy, precision, recall,
and F1-score, specifically to account for the imbalanced nature of the dataset.

4 Datasets and Experiments

4.1 Datasets

Each A2O site consists of a group of four sensors, two in dry areas and two in wet
areas, each recording continuously for 24 h per day [14]. In this study, we selected
a two-week period during Australia’s Autumn season for further analysis. For
each day and sensor, a Long-Duration False Colour (LDFC) spectrogram was
generated using a select combination of acoustic indices [18]. LDFC spectrograms
provide a snapshot into the day’s acoustic activity which can be visually scanned.

Table 1. Tarcutta and Wambiana dataset breakdown by class.

Sound Category Tarcutta (#

samples)

Wambiana

(# samples)

Sounds Included

Biophony 2,379 685 Any sound generated by animals (birds, frogs,

insects, etc.)

Geophony 2,014 573 Any sound from the earth (water, wind, fire,

etc.)

Anthrophony 532 252 Any human-made sound (cars, airplanes,

human speech, etc.)

Other/Silence 1,679 727 Mostly represents long periods of silence but

can include sounds like ”white noise” or ”pink

noise”, electromagnetic interference, etc.

Total 6,604 2,237 8,841

Two datasets were collected by visually analysing the corresponding LDFC
spectrogram and aurally listening for each of the main categories of sound. The
first was collected from the Tarcutta site, a temperate woodland area located
in south-western New South Wales. The second was from Wambiana, a small
station in the tropical Far North Queensland located three hours outside of
Townsville. We chose these sites specifically because they are geographically
spread. This spread ensures that there is a high intra-class variance in the sounds
captured, which is representative of the real-world. Furthermore, sounds vary
greatly on a day-to-day basis, which we wanted to capture by taking samples
from as many days as possible. As seen in Table 1, the final datasets were roughly
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equally distributed across three of the four major sound groupings (biophony,
geophony and other/silence), with less anthrophony due to the seclusion of the
sites. Importantly, no preprocessing was conducted prior to manual annotation
to allow for the subsequent models to learn from real-world examples, with the
noise and variability of environmental factors included.

4.2 Feature Reduction Experiments

Fig. 3. The implementation workflow of the proposed framework.

Here we present the implementation workflow of the proposed framework as
per Fig. 3. Firstly, to improve computational efficiency and mitigate the curse
of dimensionality, we employed FR. Three techniques were selected for further
analysis including PCA, t-SNE and UMAP, with No-FR as a baseline. A vital
part of using PCA in practice is the ability to estimate how many components
are needed to describe the data. Similarly, the results of t-SNE and UMAP can
vary depending on the choice of hyperparameters, namely perplexity for t-SNE,
and number of neighbours and minimum distance for UMAP. For PCA, we
employed the cumulative explained variance ratio as a determinant for selecting
the optimal number of components. By plotting this ratio against the number of
components, we discerned that 7 components were sufficient to capture approx-
imately 95% of the total variance in the data, across all 13, 26 and 39 feature
vectors, striking a balance between data compression and information retention.

To find the optimal choice of hyperparameters for t-SNE and UMAP, we
applied a grid search approach across both the Tarcutta and Wambiana datasets.
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For t-SNE, optimal perplexity values typically fall between 5 and 50 [9]. Perplex-
ity is a parameter designed to shift the attention of local versus global structures
in the datasets. A low perplexity emphasises local structure, while a high value
may reveal more global structure. For our datasets, we found that a perplexity
value of 50 captured enough local distinctions while revealing the broader pat-
terns. Similarly, UMAP relies on the tuning of the number of neighbours and
minimum distance parameters to balance local versus global structures in the
data embedding [10]. Here, a lower number of neighbours will focus on local
structure, and the minimum distance controls how tightly UMAP packs points
together, with lower values leading to more compact clusters. We found that a
value of 6 and 0.1 for the number of neighbours and minimum distance, respec-
tively, produced a result where clusters representing different sound patterns
remained distinct and without excessive overlap or bridging.

4.3 Denoising with Spectral Subtraction

For the next step in our framework, we retained one dataset in its original state
to serve as a reference. On a copied version, we applied spectral subtraction.
Spectral subtraction is a common approach to audio noise reduction. It functions
by generating a noise profile and subtracting it from the original signal. This
process preserves vital information like bird and frog calls, while eliminating
stationary background noise often found in environmental recordings such as rain
[21]. By performing this, we were able to conduct a comparative analysis between
the raw and denoised data, thereby understanding its impact on subsequent
classification tasks.

4.4 Optimising Classifier Models via Grid Search

To effectively evaluate the classification performance on the uniquely challenging
natural soundscape datasets, we employed a diverse set of supervised learning
techniques including SVM, DT, k-NN, NB and ANN. To find this selection, we
examined several techniques and chose based on their differences in learning prin-
ciples and foundational algorithms. We wanted to showcase a range of strategies
to investigate how they perform with the inherent complexities of the ecoacous-
tics datasets. SVM is well-known for handling high-dimensional data, making it
an ideal candidate for this study. Given its ability to handle high-dimensional
data and its efficacy in finding optimal hyperplanes for classification, it was a
clear choice. For our purposes, we used the default parameters, as they offer a
solid benchmark and are often optimised for a broad range of datasets.

We selected DT because they are interpretable, and their hierarchical struc-
ture allows for an intuitive understanding of decision processes. Using default
parameters provides a baseline and avoids overfitting that might arise from exces-
sively deep or complex trees. Similarly, NB was incorporated with default param-
eters to test how the model’s underlying probabilistic assumptions perform with
these datasets. With a range of algorithmic approaches selected, we identified the
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need for hyperparameter optimisation, where the model’s sensitivity to them sig-
nificantly influences the outcome. As such, we employed a grid search approach
for both k-NN and ANN, as both require a thorough evaluation for performance
optimisation. k-NN is particularly effective in situations where data might form
natural clusters based on similarity. However, the choice of k is crucial. As such,
we utilised a grid search approach to ascertain the optimal number of neigh-
bours k to consider, ranging from (k = 1, 3, 5, 7, ... 31), ensuring our model was
neither too generalised nor too specific. Similarly, for ANNs with their inherent
flexibility, certain hyperparameters such as solver type and hidden layer sizes
required tuning.

5 Results and Discussion

5.1 Classification Results

Experiment Setup. We applied the grid search method with 10-fold cross val-
idation using several datasets: firstly, the unaltered datasets from the Tarcutta
and Wambiana sites derived from the A2O containing 6,604 and 2,237 signal
samples, respectively, as well as their denoised versions where spectral subtrac-
tion was applied. Additionally, we further constructed a combined dataset, pool-
ing samples from both sites together. 10-fold cross validation ensured that each
approach minimised the risk of overfitting and provided us with a more reliable
assessment of their performance. Furthermore, to ascertain the model’s capabil-
ity for generalisation across different ecoregions, we designed two cross-dataset
validation tests. Instead of using 10-fold cross validation, we used an 80%/20%
train/test split, respectively. By training on one site, and testing it on another, we
could evaluate how well the models adapted to new, unseen data, which is vital
in large-scale ecoacoustics, where conditions can greatly vary between sites. We
assess model performance using the following key evaluation metrics: accuracy
(proportion of correct predictions to total predictions), precision (proportion
of true positive predictions to total positive predictions), recall (proportion of
true positive predictions to actual positives), and the F1-score (harmonic mean
of precision and recall). After conducting several simulations, the classification
accuracy performance of each combination of feature vector, tuned feature reduc-
tion approach, and optimised classifier for each dataset is showcased in Fig. 4.

Findings. For ANNs, we found the Adam optimiser with a hidden layer config-
uration of 10 neurons in two consecutive layers to be the best performer. Across
our experiments, ANNs were consistent, positioning it around the midpoint in
terms of performance out of all the classifiers as seen by the relatively even colour-
ing in Fig. 4. Interestingly however, denoising exhibited mixed effects, improving
accuracy by 2–3% in the Tarcutta dataset, but decreasing it by approximately
the same for Wambiana. Conversely, NB performed the least effectively among
the studied classifiers. Regardless of the MFCC vector dimensionality, it repeat-
edly underperformed. Despite this, some FR, especially UMAP, bolstered its
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Fig. 4. Dual 3D stacked heatmaps showcasing the accuracy performance of each dataset
on the Z-axis with respect to each classifier (ANN, NB, k-NN, DT, SVM) on the X-
axis, MFCC feature vector (13, 26, 39) and FR combination (PCA, t-SNE, UMAP,
No-FR) on the Y -axis.

capabilities, but it was still not able to elevate NB significantly enough. Sim-
ilarly for DTs, although the 13-MFCC feature vector offered some increased
performance when combined with t-SNE, it still lagged behind the leading clas-
sifiers. For the k-NN classifier algorithm we determined that the optimal k -value
was k = 5, as it obtained the best classification performance across each dataset.
With this, k-NN was able perform relatively well, particularly when paired with
UMAP and t-SNE embeddings. However, SVM emerged as the strongest per-
former among the classifiers, achieving the highest accuracy in four out of the
seven datasets used. Interestingly, the 13-dimensional MFCC vector, when com-
bined with No-FR, maximised its class-separation capability. This is evidenced
by 97.77%, 98.27%, 97.45% and 97.78% accuracy for the Tarcutta, Wambiana,
their combination, and when training with Tarcutta and testing with Wambiana,
respectively.

5.2 Discussion

In evaluating the multitude of algorithms employed in this study, SVM emerged
as the standout performer in classifying the unique natural soundscape datasets,
with k-NN in a close second. As seen in Fig. 5(a), while SVMs consistently
achieved the highest accuracy, k-NN’s effectiveness was more stable across the
experiments as shown in Fig. 5(b). SVM’s superior performance highlights its
adaptability and efficiency in parsing the complexities inherent in such data.
This goes against the findings of [6], who found ANNs with MFCCs to be
as equally performant for their natural soundscape dataset. However, we have
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Fig. 5. Comparative line charts highlighting the effectiveness of the two best perform-
ing classifiers of (a) SVM and (b) k-NN against each dataset with respect to each
MFCC feature vector (13, 26, 39) and FR combination (PCA, t-SNE, UMAP, No-FR).

shown through our experimental design that our approach has more proven flex-
ibility across a range of ecoregions, as opposed to a dataset derived from a single
study site. As for the feature vectors, Table 2 shows that classification results
were consistently the highest when utilising 13 MFCCs. This goes against our
initial assumptions and indicates that these coefficients alone are capable of cap-
turing the underlying audio features without the need for additional temporal
detail. The only exception to this case is when signal detail is lost through other
means, such as denoising, as signified by the best performing methods for the
denoised datasets using higher-MFCC feature vectors.

Table 2. The best classification performance for each dataset using the optimal
method.

Dataset Method Accuracy Precision Recall F1-score

Tarcutta 13-MFCC+No-FR+SVM 97.77 96.82 95.90 96.31

Wambiana 13-MFCC+No-FR+SVM 98.27 98.38 97.70 97.98

Tarcutta (Denoised) 39-MFCC+UMAP+k-NN 97.03 97.18 97.08 97.08

Wambiana (Denoised) 26-MFCC+UMAP+k-NN 96.04 95.73 95.05 94.90

Tarcutta + Wambiana 13-MFCC+No-FR+SVM 97.45 96.40 95.85 96.09

Tarcutta → Wambiana 13-MFCC+No-FR+SVM 97.78 96.54 96.02 96.27

Wambiana → Tarcutta 13-MFCC+t-SNE+k-NN 98.66 98.63 98.22 98.42

With respect to FR, the efficacy of t-SNE and UMAP in comparison to PCA
is conditional based on the type of dataset and classifier used, as evidenced
by the varying results in Fig. 5. It is of interest to note, that while SVM had
better outcomes with No-FR, other classifiers, like k-NN, consistently benefited
from this step. Furthermore, the classifiers demonstrated consistent performance
across both the Wambiana and Tarcutta datasets. Regardless of the wide vari-
ance in sounds, or the disparity in dataset sizes (6,604 compared to 2,238 sam-
ples), the models maintained consistency, further demonstrating the flexibility
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of the proposed framework. Additionally, our cross-dataset validation experi-
ments revealed not only great robustness in our approach, but also affirmed its
potential for generalising across diverse ecoregions. Our optimised models were
purposefully not conditioned on a particular set of species, nor were the datasets
they were trained on overly sanitised. Instead, our models were trained with
the nuances of real-world natural soundscapes included. While this has been
achieved in other studies, such as [16], we have demonstrated a significant accu-
racy improvement upon this. Despite this, our approach was still able to achieve
comparable results to studies which do use single-species datasets such as [1,3]
and [8]. Conversely, while spectral subtraction as a noise reduction technique
appeared promising initially, in practice, it removed too much signal informa-
tion. From our experiments using the denoised versions of the Tarcutta and
Wambiana datasets, models generally saw higher accuracy performance without
spectral subtraction. This reaffirms the inherent challenges in this approach, as
it can be difficult to generate a single noise profile to cover the wide variance
of sounds across two distinct ecosystems and may be more suitable for datasets
with a narrower focus [21].

6 Conclusion

Australia has some of the richest biodiversity globally, and it is imperative to
monitor its species using sound, particularly those at risk. Until now, there has
been a lack of transferability in model design across multi-ecoregion and multi-
species datasets. Our methodological design, incorporating a range of super-
vised classifiers, pivoted around these challenges through the use of two distinct
natural soundscape datasets. From this, we were able to conclude that for the
majority of cases, 13 MFCCs, with No-FR applied, with SVM as the classifier, is
consistently superior for this task. Moreover, this indicates that large-scale ecoa-
coustics datasets, transformed under this proposed framework, may be linearly
separable in high-dimensional space and implies that, given a similar dataset,
SVM may provide reliable classifications. Since we focused on incorporating the
nuances of real-world natural soundscapes across different ecoregions, we believe
that our framework is generalisable. Cross-dataset validation reinforces this, as
high accuracy was maintained despite the large sound variance at each site.
With this, we have strong supporting evidence that shows our proposed frame-
work improves upon pre-existing approaches, is accurate and robust, and may
serve as an ideal base for future ecoacoustics classification tasks.
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